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Equations of the theory of elasticity in displacements are solved for a layer
of thickness h Dby utilizing Fourler transformations. An asymptotic of the
solution 1s obtained in the parameter h , where the order of the asymptotic
depends on the differential properties of the functions describing the volume
forces and the external stresses on the layer endfaces. Equations reducing
the solution of the three~dimensional problem to the solution of a chain of
two-dimensional problems are derived.

A great number of works is devoted to the solution of the problem of an
elastic layer. The fundamental ones are cited in a short survey presented
in the book by Lur'e [1] in which are also given original researches utiliz-
ing the symbollic method. The Fourier transform is applied herein, which
results in intermediate formulas of substantially the same form as in [1].
However, use of the Fourler transform permits a more detailed analysis of
the obtalned expressions by reliance on the apparatus of generalized func-
tions. By this means the asymptotic of the solution of the problem has suc-
cessfully been obtailned, and the solution has also been reduced, as is cus-
tomary in such kind of three-dimensional problems, to the solution of a chaln
of two-dimensional problems.

Let us consider an elastic layer of thickness » whose mlddle plane coin-
cides with the 2z = 0 plane, in an x, y, 2z Cartesian coordinate system.
Let n be the unit vector normal to the middlie plane, directed in the posi-
tive z direction. Let us decompose the displacement vector of points of
the layer into the vector W parallel to the middle plane, and the vector
wn perpendicular to it, where w 18 a scalar function. Analogously, let
us decompose the volume force referred to unit volume of the layer into a
vector M parallel to the middle plane and a vector #n perpendicular to
it. Instead of the =z coordinate it is convenient to consider the nondi-

mensional coordinate
L=2z/h (—-1<i<+ Y

Utilizing the notation introduced, the equations of the theory of elasti-
city in displacements may be written as
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where ¢ 18 the shear modulus, and v is the Polsson coefficient. Here,
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and henceforth throughout, the differential operators 4 , grad and div

act only on the variables x , y . Let us turn to conditlons on the layer
surfaces. The external force acting on the upper surface of the layer

¢ =+ 1 may be expanded 1nto the tangential force ¢, per unit area distrib-
uted over the upper surface, and the force p,n acting along the normal,
which 1s also referred to unit area of this surface. The analogous external
forces acting on the lower surface of the layer ( = — 1 are denoted by ¢_

and p_.n . In the conventional notation the condliticns on the layer endfaces
are
1 hgradw-{— { b E=-+1)
—t. ((=-—1) @
— v ow 1 1—=2v( p, &=+
1 haivu === h *+
3 + oz 27 2Gv {_ . (E=—1)

Let us consider separately the cases of nonsymmetric and symmetrlc loading
of the layer on the endfaces ln the absence of volume forces, and the case
of a layer subjected to volume forces but free of stresses in the endfaces.
Let us put

T+=1/2(t++t—)’ T—=1/2(t+—t—)' P+=l/2(P++P-): P-:l/Z(P+_P—)
For the nonsymmetric loading (Problem A) we shall solve Equation

1 X d0%u 1 0w __
T—3 gradd1vu)+a—?+?h1 gr ad — T
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th + v w dV..E:
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with conditions on the endfaces

1,1 v ow__ 1 1—2vP — 1) (4
_hgradw+ c _h_G.T__, _a_c__i_z-hw L= 1 (4

For the symmetric loading (Problem B) conditions (%) are replaced by

1.1 1 ‘Vaw 1,1—2v
=+ _h_ = = _h__Z"P_ =41
: 5 hG T,, = hdivu -|— 7 T E=21)

The case of volume forces (Problem C) reduces to the solution of (1) with
homogeneous condltions on the endfaces

_hgradw+ a

1 611_ 1 : 1—‘\’@_: _ 1
hgradw—{-C 0, 7hdlvu—{— T =41

The solution of the original problem (1), (2) is given by the sum of the
solutions of Problems 4, F and (C .

Let the vector function M and scalar ¥ admit of the expansions

0.0}
1
M=) 77 (/2 )" Ms™, N = 2 o (s REPNA
n=o (5)
M — "M (z, y, z) N "N (z, ¥, 2)
ES _az" o ’ 0 azn =0

It 1s assumed in all the subsequent exposition that the vector functions
M( T,, T_ and the scalars 1V ) P, P_, which depend only on the variables
Xy y, admit of Fourier integral representations in these variables. Let »r
and k denote two radius-vectors with components x, y and €, n, respec-
tively. We denote the Fourier transform of the function f(r) by Js*(k
Hence
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* ()= S S 1 (r) 7 dz dy, r)=4 S \ 7 ) e dg an

Let us examine the solution of Problem A in more detall. Let us apply
the Fourier transform in the x, y variables to (3) and the endface condi-
tions (4). The variable ({ should hence be considered a parameter. The
transformed equations and endface conditions may be written thus

our 1, 1 ow 1,7 1
cu- 2 TR A " X % _
s sty e KT R [k“ +1—zv(“'k)k]‘0
Fut Ly 4 B gy, 1—2v 0 ©
3 2 id—w) & 2" TA=w)
LR W P
a 2 2 G Y|
dus 1 v L. 1oy E=41) (O
owt L idn sk—t 15 1= p.
ot Tl k=t g gy P

Here k 1is the modulus of the vector k (¥ = |k|]). Let us introduce the
vector Xn X k , which 18, exactly as is k , parallel to the middle plane
and equal to the vector Xk 4in absolute value. Therefore, the vectors u¥
and T# may be decomposed into single linearly independent vectors 4 'k
and k'K . Let u,* and ‘uxF denote the components of the decomposition of
the vector w* , and simllarly for the components of the decomposition of the
vector T_*. Multiplying scalarly the first equation of (6) by # 'k and
k'K successively, we replace them by a system of three equations in the
scalar functions u.*, ug* and w*

21, %
Pt A A w4, 20=%) , . g

—_ bt hk —_ 7
ars 2 1—2v 8 4 1—2v
w* A 1 ou,* 1 02uK* 1 (8)
il —hk ——  _*  __  hp* — - — =
o T Mramyy g T =0 g T =0
The endface conditions become
ou,* 1 1, 1 JuK* 1 1
i hkw*=_h__T_.* e =—h—_T_*
g Tight =gty T Tt Te X )
ow* A | v i 1 —2v
— hk * = —h__-—"°" p* =41
a tiet i =t b ma e t=+D

We shall consider (8) as a system of ordinary differential equations in
the argument ( . The solution of this system taking account of the boundary
conditions (9) may be written as follows:

* —
uk =

1 . [1/2 hkcoshllg hk —2 (1— V)_sinhllz hk]ﬂnhl/z hkl__’,——sinhllghkllghkgcoshllz hkc T * +
Tk sinh hik — hk -k
+ [1/s hhsinlfy Bk — (1 — Qv)mhl/ﬁc;:ﬂf/zzkg — coshlfy hk 1)y hkL coswl/fs hE( iP+*} (10)

L sinbl/y hk 3y hksinb/y hkE— [, hkeosh!/y hk + (4 — 2v)sinhl/, hk]cosl/y KL o
EE{_ sioh hk — hk «
coshi/, bk 1y hiksiab 1/, hkg — [}/, hhsiobl/y hk + 2 (1 — V)oosh'/s hk]oom/s hk L p }
- sinhhk — hk *

1 sianl/p REL

K" = G sk K

w*=

u

The coefficlents of the functions T% and P.* in (10) are analytic func-
tions of » and may be expanded in Laurent serles in the neighborhood of the
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point A = 0 . Such an expansion leads to the following expressions:

1 6(1——v) 13(1-—v) IWV—02—Vv)E.p s 0
_ g { o iP*k + o ____.._(T Kk L e iP, ( %
1 1 2(1—v) K 1 6(1 ) 1 3[(”—v)—v§21p .

+ (2_“14)/_—2‘_31’5 P (T_*k) - O(h)} 1)
where the series are written down to terms of order h . In order to obtain
the decomposition of wu* it has here been taken into account that

u* = u *kk - ug*k 1K
where, by virtue of the last formula in (10), the second member on the right
may be written as 1 R
ugth 1K = L S BAG g o e (7 ey k)
Gk coshl/, hk
Applying the inverse Pourier transform term by term to both sides of (11},
we reduce the right side to integrals of the form

00 00 OO

o0
4:;2 S S S SlF(r')klkk”"e"“"""dadndy’dy’———

—00 —C0 ~—00 —-00 0? oo
= (— 1)™ grad div S S F(r') A™5 (r — 1) dz’ dy’

—00 —00

oo 0
S S f () kk2™ ) g gy do’ dy’ = (12)
—00 —00

= (—1)™ grad S S f(£)A™8(r — r')dx’ dy’

90 ©0 00
S S S F () ki K0~ gE dnde’ dy’ =
—00 —00 —0

= (—1)™ div S g F(@)A"8 (r —r')dz’ dy

—o0a —00

f@)YA™S (r —¥)da' dy

ée/-.8

1 O 0 00 00 (o]
e S S s S F(r') k¥ BT g am d” dy = (—1)™ g
—00—(1)—‘2)0—00 —00

where &(r) is the Dirac function on a plane. If m =—1 or m= -2,
then the fundamental singular solutions of the Laplace or bilharmonic equa-
tions, respectively,

- 1 - 1
Alé(r)z}—‘—lnr, A%(r):Er*lnr

may be substituted into the right sides of (12) with the result that we arrive
at the customary integrals of potential type. According to the fundamental
property of the 6-function, we have for m = O at all points of continulty
of the function J(r) 0 oo

S f(F)d(r—r)da’ dy =f(r) (13)
—00 —00
Thus, for the classical solution, if differentiability of the functions
T and P 1is required, just the terms without positive powers of i may be
separated out of the expansions. Hence, we can obtain an asymptotic up to
terms of order 0(nr°) inclusive. Thus, performing the inverse Fourier
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transformation of (11) and utilizing (12) we obtain

61— ¢
u(l', C)=—8§G grad{ ( ) S S P+(]")(l'—r')2lnlr"-rl|dlldyl+
3d—v) ¢ ¢ .,
T V) 3 S T (F)(e—r)2lnjr—r| +1)de’ dy +
~ [3v—=(2~—v){?% 5 S P+(r')ln|r—r’|d:c'dy'}+%.u
1 (12(4 r
w(r, U=m{ ht—V) S S P (f)(r—=r')In|r—r|de dy +
6 1— [o.¢] (o]
+ 25 S | - emr—r iy —
_6[2—v)— G
(2 v) V2] S Po(r)ln e —r|de’ dy —
~te=v—se1 | {ree—n e a)+ 5w

where the functions U and # tend to their limiting values as h - O
which may easlly be evaluated. The limiting values of U and W depending
on the functions T. and P, are finite if the functions T. and P, are
bounded in absolute value.

If the functions T. and P, have derivatives up to the order 2m , then
terms up to the order of ©om 1n k may be separated out in the Laurent
expansions. In the appropriate integrals of {12) we can transfer from the
§-functions in the right sides to iteration of the Laplace operator in the
functions T. or P, , thereby arriving at formulas of the form (13). Hence,
an asymptotic of correspondingly higher order 1s obtalned. Reasoning, ana-
logous to the presented above, may be repeated relative to the remalning
terms, where boundedness of some differential operators of the functions T_
and P, 1n absolute value is required for boundedness of their limiting
values.

By using the obtained expressions the solutlon of the problem on an elas-
tic layer may be reduced to the solutlon of a chain of two-dimensional prob-
lems. If the solution is represented as a power series in h (14)

1 1 1 1 1
w=-’lTw_a+Fw_2+Tw_1+wo+hw1+..., 11:—}‘?“—2+T“-1+u0+h“1+---'

then we can put

w_=W_g, w,=W_y, v = —1+s1 SUAW_, W=+ g 1_‘,gaAW

U_p=— —C— gradW_, uy=— %grad w_,

1
4y = Cgrad(w +41_VAW-3>+481 s grad AW, . ..

Here the functions W.5, W_az,... satisfy Equations
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12(4 — 32—
AW _, = _LG_V) P AW _ =— —(ZZ—V—)AP
+? G + (15)
y _6(1l—w) . . 2—w .
AW _, = -G divT_, AW, = — "ZG—AdIVT_,

These equations will be valld in the sense 1n which the differential oper-
ations on the functions T_ and P, in thelr right sides may be considered.
Thus, 1f the classical solution is sought, the functions ¥, may be calcu-
lated to values of the subscript { for which the difrerential properties
of the functions T_. and P, permit application of the operators in the right
sides of the approprlate equations in (15).

The first equation in (15) agrees with the known equation of Sophie Ger-
main in plate theory. If the Kirchhoff hypothesis is used, this equation
may be deduced, which therefore corresponds to the first approximation in
the obtained asymptotic ex ansion It 1s interesting to note that we
can arrive formally at 15§ if 14) 1s substituted into (3) and the condi-
tions (4) are terms in 1dentical powers of h are equated. Equations (3)
hence reduce to a recursion system of ordinary differentlal equations in ¢,
where x and y may be considered as parameters on which the arbitrary
functions W, depend. The latter are selected so that the endface conditions
would be satisfled. These conditions will be satisfled if the W, satlsfy
Equations (15).

Problem B is solved completely analogously, hence, we present Jjust the
final results. For the functions u % w and ug* we will have

oL [ Clahsiotiy bk — 2 (4 — v)ooutfs hkJcoutfy hL~cot/ hik?/y Rk siok/; hit
“x :G_/c{ simh Rk T ik Tt
+ [1/3 hkcoshlfy hk — (1 — 2v)sinh/ohiJcosnl/ghkl — sitib!/ohk !/2hk;mn1/,hk§
sinh hk 4 hk }"
i 1 4{—
=?;7[ kv T,.* + - z viP_* +0(h)]
L [ cou/ohk Yghhkoosh/shkT — [Y/shksioh'/ohk + (1 — 2vjooti/shk]samfshkl .,
=Tk { sint K - T
__sioh1/5hk 3/phkTcosh! /shkT — [Y/ahhoosh 1/ohk - 2 (1 — v)sinh}/ohk] sinn?/ohkl P ‘_} -
sinh hk 4 hk —
1
= % [— — VT, * +0 (h)]
1 coshl/,hkl 1712
“g* = Tk ml/zz hk T4k = W[T % Twx*+0 (h)]

and therefore

11 ¢ ¢
u(, )=—7F W S g T, (r)ln|r—r |dz’ dy +
-—00 —00
1 14 o 00
+mg"ad[ 2hv S S T, (r)(r—r)(2In|r—r|+1)de" dy’ —
—00 00

|
<
Lo

P_(f)In|r—r'|ds’ dy’] +0(h)

w(r, €)='4_Ea\’

ég/:S éM8
ég4f18

T, (r )(l‘—l‘)(r r)zdz dy’ 4 O ()
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Finally, 1f we put

1
U= gruytuythu uz::‘ua,»szl-~,L
(u_le_l' u0=U9,...,11:0..-—_.__ 2§1 leU )’
then, to determine the functions U, we obtain Equations
2

+1 graddlvU =

1
AU, k1+ grad div U, == 1T—~ v gradP

In solving Problem C we must deal with the inhomogeneous equations {1).
This does not introduce any difficulties in principle, however, the computa-
tion is conslderably more tedious. The final results may be written as

1 1 1
w:—-’-l-;w_z—l-—h—w_l—{-w0+hw1+... u:Tu_1+u0+hu1+“
i 1., v
o =W_,, w_ =W_, wo=Wo+ g 07— AW - -
1 1
u_1=-———z—€gradW_2' u0:U0-7§gradW_1,---

and finally the equations to determine U, , W, are

1
AUo—l—1 graddlvUo_ < Mo, ...

6(1— v v -
A2W_2 =-—(_a——l)N0, A2W_1—_:0’ A‘AIVo:__ e AN0+ G divM,0+_4G_—N0~""

where My and N,m are determined according to (5).
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