
ASYMPTOTIC SOLUTION OF THE 

PROBLEiM OF AN ELASTIC LAYER 

(mm-- OBUP!tU~fSLO@ 

PRM vo1.30, I4, 1966, sp.754-759 

S.S. DYMKOV 

(Leningrad) 

(Received July 12, 1965) 

EqUEttions of the theory of elasticity in displacements are solved for a layer 
of thickness h by utllizlng Fourier transformations. An asymptotic of the 
solution Is obtained In the parameter h , where the order of the asymptotic 
depends on the differential properties of the functions describing the volume 
forces and the external stresses on the layer endfaces. Equations reducing 
the solution of the three-dimensional problem to the solution of a chain of 
two-dimensional problems are derived. 

A great number of works Is devoted to the solution of the problem of an 
elastic layer. The fundamental ones are cited In a short survey presented 
In the book by Lur'e Cl] in which are also given original researches utlliz- 
ing the symbolic method. The Fourier transform is applied herein, which 
results in intermediate formulas of substantially the same form as in cl]. 
However, use of the Fourier transform permits a more detailed analysis of 
the obtained expressions by reliance on the apparatus of generalized func- 
tions. By this means the asymptotic of the solution of the problem has suc- 
cessfully been obtained , and the solution has also been reduced, as Is cus- 
tomary in such kind of three-dimensional problems, to the solution of a chain 
of two-dimensional problems. 

Let us consider an elastic layer of thickness h whose middle plane coin- 
cides with the E - 0 plane, in an x, I/, z Cartesian coordinate system. 
Let II be the unit vector normal to the middle plane, directed in the posl- 
tive t direction. Let us decompose the displacement vector of points of 
the layer into the vector u parallel to the middle plane, and the vector 
tar perpendicular to it, where 10 is a scalar function. Analogously, let 
us decompose the volume- force referred to unit volume of the layer Into a 
vector M parallel to the middle plane and a vector Nn perpendicular to 
it. Instead of the I coordinate It is convenient to consider the nondl- 
mensional coordinate 

P=Zz/h (--2<56+~) 

Utilizing the notation introduced, the equations of the 
city In displacements may be written as 

$ h2Aw + 2 ~v-$$-+~h&div$-+$.h~-&N=O - 

where G is the shear modulus, and v is the Poisson coefficient. Here, 
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and henceforth throughout, the differential operators A , grad and dlv 
act only on the variables r , y . Let us turn to conditions on the layer 
surfaces. The external force acting on the upper surface of the layer 
; = + 1 may be expanded Into the tangential force t, per unit area dlstrlb- 
uted over the upper surface, and the force p+n acting along the normal, 
which Is also referred to unit area of this surface. The analogous external 
forces acting on the lower surface of the layer 5 = - 1 are denoted by t_ 
and P-n . In the conventional notation the condltlcns on the layer endfaces 
are 

;hgradw+!!!=~h~ t, (b=-kl) 
ac 2 G -t_ (5=-l) 

v aw 1 I-2v 
ihdivu+$--q=yh- 

P+ (5=+ 1) 
2Gv -p_ (5=-l) 

Let, us consider separately the cases of nonsynnnetrlc and symmetric loading 
of the layer on the endfaces In the absence of volume forces, and the case 
of a layer subjected to volume forces but free of stresses In the endfaces. 
Let us put 

T, ='/a(t+ + k-)9 T_='/a(t+ - L), P+='/z(p+ fp-)* P_=Yz(p+-P-) 

For the nonsymmetric loading (Problem A) we shall solve Equation 

aha Au+&graddivu + ;h&--grad% =0 

’ h2Awf2 l--y?!-!+~h~ 
X I- 2~ ay 2 1-2~ 

div?!?! =O 
ag 

(3) 

with conditions on the endfaces 

;hgradw+* c+h-&T_, 
ac 

ihdivu + 

For the symmetric loading (Problem B) conditions (4) are replaced by 

f h grad w + Lf?! =- ag i+h$T+, 
i--Yaw 

+hdivu+--=- 
v a< 

; hzP_ (5-f 1) 

The case of volume forces (Problem C) reduces to the solution of (1) with 
homogeneous conditions on the endfaces 

ihgradw+*=O, 
at 

Ghdiv u+ 

The solution of the original problem (l), (2) is given by the sum of the 
solutions of Problems A, B and C . 

Let the vector function W and scalar N admit of the expansions 

M= fj + (l/z h5)%? 

tl=O 

N = ; + (Qx hc)“No(@ 

n=o 

&fp = aw (2, Y, 4 anN (5, y, 2) 
a2n 9 

Nofn) = 
L==O 

a2n z=o 

It Is assumed In all the subsequent exposition that the vector functions 
M,@), T,, T_ and the scalars N,@), p,, p_, which depend only on the variables 

x, y, admit of Fourier Integral representations In these variables. Let c 
and k denote two radius-vectors with components x, y 
tlvely. We denote the Fourier transform of the function a?$)C~yn'lf~~~? 
Hence 
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j*(k)= 
s s 

f(r)~*~~ dz dy, f*(k)6”‘dE dv 

Let us eXamine the solution of Problem A In more detail. Let us apply 
the Fourier transform In the X, I/ 
tlons (4). 

variables to (3) and the eddface condl- 
The variable C should hence be considered a parameter. The 

transformed equations and endface conditions may be written thus 

8U’ __+&-l_a$?!!?k- +hs 
2 I-2v ag 

k%* +i+(u*k)k 1 =0 saw* . 1 ~3 ju*k) F+t2.h2+--- - 
(6) 

-v) %I 

i ,,2k2 ‘--’ wo*>0 

4 Z(1-v) 

!?$+i;hw*k=$ h$T_*' 

'%$_+i$h$_._+u*k=f-!h '-" 
(5= &*I) (7) 

2 2G(i-v) p+* 

Here k Is the modulus of the vector k (k - IkI). Let us Introduce the 
vector Kn x k , which Is, exactly as Is k , parallel to the middle plane 
and equal to the vector At ln absolute value. Therefore, the vectors U* 
and I* may be decomposed into single linearly Independent vectors k-‘k 
and k=‘]I . Let uk+ 
the vector @ 

anduK? denote the components of the decomposition of 
and similarly for the components of the decomposition of the 

vector T_+. I&ltlplylng acalarly the first equation of (6) by k-‘k and 
K’K successively, we replace them by a system of three equations In the 
scalar functions i~2, uK+ and w* 

a2uk* 
F+i~hk._?__aw* 

I-2v ag 
_+lkP ‘tl--‘) Ukf=O 

i--v 

a%* 
F+iihki% _ _ 

2 (I- 
' h2k2w* = 0, 

PUK* 
_ - !- hzk‘bK* = 0 

(8) 

V)q 4 ap 4 

The endface conditions become 

i3Uk' 
ag +i+hkw*=ih$- T_,*, 

auIc* 
- 

ac 
=;h+ T_,* 

aw* 
~+i~hk$-vuk*=+$h2&~~v) P+* (C=f1) - 

(9) 

We shall consider (8) as a system of ordinary differential equations in 
the argument C . The solution of this system taking account of the boundary 
conditions (9) may be written as follows: 

1 
uk*= a 

I 
- 

['I2 hkcoehl12 hk -2 (I- v)+I@/~ hk]&/, hk~-ssiah’/~hkl/~hk&xt?/z hkb T_,+ + 
stihk-hk 

+ [‘/2 hksinh’12 hk - (I- 2v)co.s13’/2 hk] hl/, hkc -cast& hk ‘1% hkr, co.d/n hk< ip+e ‘I 
sinhhk - hk J (IO) 

1 

w*=zii - { 

SW/~ hk ‘I2 hkcrinhl/, hk<- [‘/2 hkco&z hk+(i-2v)ti1/2 hk]ooah’/e hk< iT_,* _ 
sinh hk - hk 

cesUfz hk ‘I2 hk@nh’/2 hkf - [‘/2 hksm12 hk + 2 (1 - V)COSII~/~ hk]co& hk 5 - 
sinhhk - hk 

p+a 

UK*==xiT~ 

1 *l/2 4 T_,+ 

The coefficients of the functions T_* and P l In (10) are analytic func- 
tions of h and may be expanded in Laurent serl*es In the neighborhood of the 
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point h I 0 . Such an expansion leads to the following expressions: 

5 u* zzz - 
1 S(l- v)ip 

G ---F-F- + 
*k +L3(1- v)(T_*k)k 13v-((2--)5”ip+*b;I O(h) 

h k4 c 4/i”- 

w* = j_ f_L 12 (1 - v) p a + _l_ 6 (1 - v) i(T_*k)+ L 3 [P - v) - “5’1 p * L_ 
G ‘I hS k4 + h” ---j&- ’ 

+ ‘“-“l; 3vi’i(l?k)+D&)] 

zk2 + 

(11) 

where the series are written down to terms of order h . In order to obtain 
the decomposition of u* It has here been taken Into account that 

u* = u,*k-'kd- uK*k-lI( 

where, by virtue of the last formula In (lo), the second member on the right 
may be written as 

uIC*k-1K - 1 *ph ‘/z hkr, [T_* _ k-2 (T_+k) k] 
Gk co&/% hk .- 

Applying the Inverse Fourier transform term by term to both sides of (ll), 
we reduce the right side to Integrals of the form 

24 s s s [F (r’) k] kk2”‘eik trer’) dt dq dy’ dy’ = 

--oo--a,--or,--oo 0300 8 
= (- 1)“‘” grad div 

I s 
F (r’) A”‘6 (r - r’) dx’ dy’ 

--OD 

f (r’) kk2me’X(r-r’) dE dq dx’ dy’ = 

-co--03-40~ 

= (-1)“’ grad 1 1 f (r’) A’%(r - r’)dx’ dy’ 

--en---co 

(12) 

& 1 1. 1 5 F (f) kkameik(r-r’) dE dq dx’ dy’ = 

-ca--o3~~ co co 

= (-l)m div 1 \ F (r’) Am6 (r - r’) dx’ dy’ 

--KL-& 

& 1 f f 1 f(r’)kam~fk~r~r’~d~d~dx’dy’=(-l)m 7 1 f(r’)A?j(r-r’)dx’dy’ 

-m-co&--m -L--CO 

where 6(r) is the Dirac function on a plane. If In =-1 or m=-2 
then the fundamental singular solutions of the Laplace or blharmonlc ec&- 
tions, respectively, 

1 
A-‘6 (r) = x In r, 

1 
A-% (r) = G r2 In r 

may be substituted into the right sides of (12) with the result that we arrive 
at the customary Integrals of potential type. According to the fundamental 
property of the 6-function, we have for m 
of the function f(r) 7 7 

- 0 at all points of continuity 

f @‘I 6 @ - r’) dx’ dy’ = f (r) 

Thus, for the classical solution, if differentiability of the functions 
T and P is required, just the terms without positive powers of k may be 
separated out of the expansions. 
terms of order O(h') Inclusive. 

Hence, we can obtain an asymptotic up to 
Thus, performing the inverse Fourier 
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transformation of (11) and utilizing (12) we obtain 

u (r, t) = - 8~ grad {6(7 1 1 
P+ (r’) (r - r’)2 In 1 r - r’ 1 dx’ dq’ + 

---cQ--a 

T_ (r’) (r - r’) (2 In 1 r - r’l + 1) dx’ dy’ $ 

- [3v-(2- V) c”] 5 s P, (r’) In ( r - r’ 1 dx’ dy’} -f $- IJ 

--ml -a3 

;o O” 

s 5 
P, (r’) (r - r’)l In 1 r - r’ 1 dz’ dy’ $ 

-oo--m 

+6(1-~)~ co 
hZ s s 

T_ (r’) (r - r’) (2 In 1 r - r’ I f 1) dz’ 4i - 
--03 -cc 

a7 m 

- 6 [(2 - v) - ~621 
h P, (r’) In 1 r -r’Idx’dy’- 

- [(2 - v) - 3vp] 
s s 

1 
T- (r’) (r - r’) (rdx’ dy’ -I- -$ W 

--00 --co 

where the functions U and W tend to their limltlng values as h - 0 , 
which may easily be evaluated. The limiting values of u and W depending 
on the functions T_ and P, are finite If the functions T_ and P+ are 
bounded In absolute value. 

If the functions T_ and P, have derivatives up to the order %I , then 
terms up to the order of BI In k may be separated out In the Laurent 
expansions. In the appropriate Integrals of (12) we can transfer from the 
b-functions In the right sides to Iteration of the Laplace operator ln the 
functions T_ or P+ , thereby arriving at formulas of the form (13). Hence, 
an asymptotic of correspondingly higher order Is obtained. Reasoning, ana- 
logous to the presented above, may be repeated relative to the remaining 
terms, where boundedness of some differential operators of the functions T_ 
and P, In absolute value Is required for boundedness of their llmltlng 
values. 

E3y using the obtained expressions the solution of the problem on an elas- 
tic layer may be reduced to the solution of a chain of two-dimensional prob- 
lems. If the solution Is represented as a power series in h (14) 

1 1 
w=hs w-.+~w_2+~lu_l+ tu+hwl+..., u=~u_2+~~_1+ug+hu1+... 

then we can put 

1 1 

W-3 = W_,, w_% = W_%, w+ = W+ + -g I& PA W_,, W,= wo + -g & PA W,, . . - 

5 t 
U -2 = - 2 grad W_,, u1 = - 2 grad W, 

6 
Uo - -3grad ( W_,+ ~&Aw+, ) f~i-_v ’ 2-v~~gradAW+... 

Here the functions W_,, W_,,... satisfy Equations 
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12(1 - v) 
A’W_q - G J’+, A’W, 

3(2-v) 
s--~AP + 

A2W_, = w) div T_, AZW,, 
2-v (45) 

= - 4~ A div T_, . . . 

These equations will be valid In the sense In which the differential oper- 
ations on the functions T_ and P, In their right sides may be cons.ldered. 
Thus, If the classical solution Is sought, the functions W 
lated to values of the subscript f, for which the dlfferen L 

may be calcu- 
la1 properties 

of the functions T_ and P, permit ap llcatlon of the oper.ators In the right 
sides of the appropriate equations In 'i 15). 

The flrst equation In (15) agrees with the known equation of Sophie Qer- 
main In plate theory. If the Klrchhoff hypothesis is used, this equation 
may be deduced, which therefore corresponds to the first approximation In 
the obtained asymptotic ex anslon 
can arrive formally at (15 P 

(14). It Is interesting to note that we 
If (14) Is substituted Into (3) and the condl- 

tions (4) are terms In Identical powers of h are equated. Equations (3) 
hence reduce to a recursion system of ordinary differential equations In C, 
where x and Y may be considered as parameters on which the arbitrary 
functions W, depend. The latter are selected so that the endface conditions 
would be satisfied. 
Equations (15). 

These conditions will be satisfied If the W, satisfy 

Problem B Is solved completely analogously, hence, we present just the 
final results. For the functions uL*,w and uIL* we will have 

1% hk s@% hk - 2 (1 - v)dl/a hk]co@/2 hk~-co&/2 hk’j2 hk6 ,i,,m’~~ hk6 T 
sinhhk+hk 

.+ 

+k 

+ [l/z hk&/z hk - (1 - 2v)si@/zhk]coa’/,hk[ - sit@/zhk ‘/zhk&W/phk< ip 

-1 

l 

riaahk + hk 

_ 

_- -& viP_+ + 0 (h)] 

1 
Eb*=a - 

{ 

Corbl/shk I/,hk&mG/,hkc - [‘/zhksiah’/zhk + (1 - 2v)Mh’/2hk]bhll,hk6 -_... 
iT 
ik 

+_ 

siakk+hk 

dl/&k 1/zhk&=bl/ahk6 - [1/2hti1/2hk + 2 (1 - v)si&*/2hk]s+‘/zhkf p 
-1 

*_ 

sinb hk + hk 

_ 

* + 0 (h)] 

1 1 2 
lb=* = 

1 cahl/,hkt 

G~T~T+K* =~k t ~TT-+K 
l + o(h)] 

and therefore 

i10300 
u(r9 6)=-.Gh . _ c c 

T, (r’) In 1 r - r’ 1 dz’ dy’ + 

i- 4& grad [G 1 j T, (r’) (r - r’) (2 In 1 r - r’ 1 + 1) dx’dy’ - 

---03--00 
03 00 

-v P_ (r’) In 1 r - r’ 1 dx’ dy’ 1 + 0 (h) 

’ O” O3 T (r’)(r-r’) ’ w(rpC)=~Cv c + s c 
___ dx’ dy’ + 0 (h) (r - r’)2 

-cn --0c 
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Finally, if we put 

i 
u=-u 

h _1_tu,+hu,t.. ., w := wp -t hw, .-I. . . 

u-1 = u_,, u. = u,, . . , WC = - 
1 T56,div U_,, . . ), 

then, to determine the functions U, we obtain Equations 

AU_, + 
i+v 
l-_v grad div U_, = - +T, 

AUo -t 
i+v 
l-_vgraddivUO =-_GvgradP_,... 

In solving Problem C we must deal with the Inhomogeneous equations (1). 
This does not Introduce any difficulties In principle, however, the computa- 
tion Is considerably more tedious. The final results may be written as 

w-~~__,+~--_~+w,+h~l-,-... u=~u,+u,+hul+... 

lu 
-2 - - w_,, w_, = w_,, w. = w ,++P & AW,, . . . 

-!- 5 grad W-2, u_z = - z u. = U, - 3 5 grad W_,, . . . 

and finally the equations to determine U, , W, are 

i+v 
AU0 + i-_v grad div U. = - -&I~,... G 

l-v 2-v 
A2W, 

6(1-v) 
5------N,, A2W_1=0, AaWo= c -~ANc+- 2G div hi’,, + r N,“,... 

where M,(n) and N&n) are determined according to (5). 
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